Question			Answer	Marks	Guidance
$\begin{array}{\|l} \hline 1 \\ \text { A } \\ \text { A } \\ \text { A } \\ \hline \end{array}$	(a)		R of thermistor decreases as temperature increases supply V is constant/ total R is smaller current increases as $\mathrm{V}=\mathrm{IR} / \mathrm{AW}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept more free e's as temperature rises using $\mathrm{I}=\mathrm{nAev}$ current increases as v decrease very small/AW
	(b)		$\mathrm{R}_{\mathrm{th}}=40 \Omega$ at $240^{\circ} \mathrm{C}$ (stated or used in calculation) total R in circuit $=240 \Omega$ $\begin{aligned} & I=6 / 240=0.025 \mathrm{~A} \\ & \mathrm{~V}=200 \times 0.025=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	apply ecf if wrong value of R read from graph allow $V=(200 / 240) 6$ so $V=5.0 \mathrm{~V}$ accept 5 V (no SF error)
	(c)	(i)	correct symbol for LDR	B1	no circle required
		(ii)	R of LDR decreases/current in circuit increases so V increases across fixed/200 Ω resistor/AW	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	accept simple potential divider argument accept voltmeter reading increases
			Total	10	

Question			Answer	Marks	Guidance
2	(a)		R's in parallel have same V/AW so $4.0 \times 0.30=6.0 \times 0.20$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	allow I splits in inverse ratio to R or AW; hence I in $6 \mathrm{ohm}=4 / 6 \times 0.3=0.2 \mathrm{~A}$
	(b)	(i)	sum of/total current into a junction equals the sum of/total current out or total algebraic sum of currents is zero	B1	allow Kirchhoff's first law
		(ii)	0.50 (A)	A1	accept 0.5 (A) (no SF error)
	(c)		correct formula for R_{p} and substitution $\begin{aligned} & \mathrm{R}_{\mathrm{p}}=2.4 \Omega \\ & \mathrm{R}_{\mathrm{s}}=8.0(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	apply ecf to R_{p} for second mark accept 8 (Ω) (no SF error)
	(d)	(i)	energy transferred from source/changed from some form to electrical energy; per unit charge (to drive charge round a complete circuit)	M1 A1	allow form as e.g. light/chemical/heat allow energy divided by charge
		(ii)	$\mathrm{V}=\mathrm{IR}=0.50 \times 8.0=4.0(\mathrm{~V})$	A1	$\text { ecf b(ii),c i.e. answer }=\text { b(ii) } \times c$ accept 4 (V) (no SF error)
		(iii)	$\begin{aligned} & \mathrm{E}-\mathrm{V}=\operatorname{Ir} \text { giving } 5.0-4.0=0.50 r \\ & r=2.0(\Omega) \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf b(ii) accept $2(\Omega)$ (no SF error); give max of 1 mark for $r=3.3 \Omega$, i.e. using $\mathrm{I}=0.3 \mathrm{~A}$
			Total	12	

