Question		on	Answer	Marks	Guidance
1 A A A	(a)		R <u>of thermistor</u> decreases as temperature increases supply V is constant/ <u>total</u> R is smaller current increases <u>as V = IR</u> /AW	B1 B1 B1	accept more free e's as temperature rises using I = nAev current increases as v decrease very small/AW
	(b)		$ \begin{array}{l} R_{th} = 40 \; \Omega \; at \; 240 \; ^{\circ} C \; (stated or used in calculation) \\ total \; R \; in circuit \; = 240 \; \Omega \\ I = 6/240 = 0.025 \; A \\ V = 200 \; x \; 0.025 = 5.0 \; V \end{array} $	B1 C1 C1 A1	<pre>apply ecf if wrong value of R read from graph allow V = (200/240)6 so V = 5.0 V accept 5 V (no SF error)</pre>
	(c)	(i)	correct symbol for LDR	B1	no circle required
		(ii)	R <u>of LDR</u> decreases/current in circuit increases so V increases <u>across fixed</u> /200 Ω resistor/AW	M1 A1	accept simple potential divider argument accept voltmeter reading increases
			Total	10	

Question		ion	Answer	Marks	Guidance	
2	(a)		R's in parallel have same V/AW so $4.0 \times 0.30 = 6.0 \times 0.20$	M1 A1	allow I splits in inverse ratio to R or AW; hence I in 6 ohm = 4 / 6 x 0.3 = 0.2 A	
	(b)	(i)	sum of/total current into a junction equals the sum of/total current out or total algebraic sum of currents is zero	B1	allow Kirchhoff's first law	
		(ii)	0.50 (A)	A1	accept 0.5 (A) (no SF error)	
	(C)		correct formula for R_p and substitution $R_p = 2.4 \ \Omega$ $R_s = 8.0 \ (\Omega)$	C1 C1 A1	apply ecf to R_p for second mark accept 8 (Ω) (no SF error)	
	(d)	(i)	energy transferred from source/changed from some form to electrical energy; <u>per</u> unit charge (to drive charge round a complete circuit)	M1 A1	allow form as e.g. light/chemical/heat allow energy <u>divided by</u> charge	
		(ii)	V = IR = 0.50 x 8.0 =4.0 (V)	A1	ecf b(ii),c i.e. answer = b(ii) x c accept 4 (V) (no SF error)	
		(iii)	E - V = Ir giving 5.0 - 4.0 = 0.50 r r = 2.0 (Ω)	C1 A1	ecf b(ii) accept 2 (Ω) (no SF error); give max of 1 mark for r = 3.3 Ω , i.e. using I = 0.3 A	
			Total	12		

Question		on	Expected Answers	Μ	Additional Guidance
3					
	а	i	correct symbols	B1	variable R and voltmeter needed
			(variable) R in series with ammeter and cell	B1	ecf variable resistor symbol
			voltmeter correctly in parallel with variable R	B1	accept voltmeter in parallel with cell
		ii1	V decreases as I increases	B1	max 3 marks with 2 marks for first two or
			caused by R decreasing	B1	second two marking points or three numbers
					and 1 mark for reference to r
			V is large when R is large or V is small when R is small		allow as R increases (decreases) V increases
			V = e.m.f. when R is infinite/open circuit or $V = 0$ when R = 0		(decreases) for 1 mark but not as V increases
					R increases; award 0/2 if reason given as
			3.14 Ω at A; 0.88 Ω at B and 0.19 Ω at C		V a R or I is constant
			any correct reference to internal resistance of cell	B1	
		ii2	at A Lis small or V is much bigger than 1/AW	D1	accontinumorical answers or 0.20 W at A
		112	at C V is small or V is much bigger than V/AW	B1	accept numerical answers, e.g. 0.39 W at A,
			ar C v is small of t is inder bigger than v/Aw	ы	0.55 W at C 0.56 W at B for 2 marks
			are about equal/balf of the maximum value	B1	comment on values for third mark
		ii3		B1	
		ii4	appreciating V against L is a straight line graph with gradient -r:	C1	accept using $V = E - Ir$ not just guoting
			aiving $r = 0.88 \pm 0.02 \Omega$	A1	formula
					allow 0.8 \pm 0.02 for calculation using any point
					on line N.B. can also have ecf(ii)3
	b	i	intensity is the (incident) energy per unit area per second	B1	accept power per unit area or power per m ² or
					(total) power/(surface) area
		ii	efficiency = power out/power in	C1	not energy out/energy in
			= 0.25/(800 x 2.5 x 10 ⁻³)	C1	
			= 0.125 or 12.5%	A1	accept 13%
			Total question 3	16	

Question		n	Expected Answers	Μ	Additional Guidance
4					
	а		resistance decreases with increase in light intensity	B1	ora
	b	i	3.0 (V)	B1	accept 3 V, no SF error
		ii	$3.0 = 1.1.2 \times 10^3$ giving	C1	accept 6 = (R/ R + 1.2 k).9
			$I = 2.5 \times 10^{-3} A$	C1	2R + 2.4 k = 3R or similar
			$6.0/2.5 \ 10^{-3} = R = 2400 \ \Omega$ 2.4 k Ω	A1	R = 2.4 k ; give 2 with POT error
					accept ratio of resistors 6/3 x 1.2
					good candidates can do this by inspection with
					no working – full marks
					allow 2400 written on answer line rather than
					2.4 if 2400 Ω within body of text
		iii	49 or 50 (W m ⁻²)	B1	ecf (b)(ii) if on R within graph range
	C	i	2.2 (kΩ)	B1	allow any value from 2.1 to 2.2
		ii	large(r) <u>changes in</u> R at low light intensities	B1	allow greater sensitivity of LDR at low light or
					steeper gradient/AW
			relating change in R to change in V	B1	e.g. bigger change in I so in V
					or use of V = $R/(R + 1200) V_s$
					or bigger change in V ratio across Rs
	d		V across 1.2 k Ω falls	B1	alternative l'increases
			so V across LDR rises	B1	because total R is less
			because ratio of Rs changes in favour of LDR/ potential divider	B1	so V across LDR rises
			argument or total V is constant		do not award B marks where there is CON e.g.
			continuous report for your long time cools of chart of iter	D1	v across 1.2 K rises so v across LDR rises
	е		continuous record for very long time scale of observation	BI	allow any two sensible suggestions which fail
			can record very short time scale signals (at intervals)	ы	within the 4 categories listed for 2 marks
			data can be fed directly to computer (for analysis)		
	_		Total question 4	14	
				14	